Novel 14-nm Scallop-Shaped FinFETs (S-FinFETs) on Bulk-Si Substrate
نویسندگان
چکیده
In this study, novel p-type scallop-shaped fin field-effect transistors (S-FinFETs) are fabricated using an all-last high-k/metal gate (HKMG) process on bulk-silicon (Si) substrates for the first time. In combination with the structure advantage of conventional Si nanowires, the proposed S-FinFETs provide better electrostatic integrity in the channels than normal bulk-Si FinFETs or tri-gate devices with rectangular or trapezoidal fins. It is due to formation of quasi-surrounding gate electrodes on scalloping fins by a special Si etch process. The entire integration flow of the S-FinFETs is fully compatible with the mainstream all-last HKMG FinFET process, except for a modified fin etch process. The drain-induced barrier lowering and subthreshold swing of the fabricated p-type S-FinFETs with a 14-nm physical gate length are 62 mV/V and 75 mV/dec, respectively, which are much better than those of normal FinFETs with a similar process. With an improved short-channel-effect immunity in the channels due to structure modification, the novel structure provides one of possibilities to extend the FinFET scalability to sub-10-nm nodes with little additional process cost.
منابع مشابه
Bulk FinFETs: Design at 14 nm Node and Key Characteristics
© Springer Science+Business Media Dordrecht 2016 C.-M. Kyung (ed.), Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting, KAIST Research Series, DOI 10.1007/978-94-017-9990-4_2 Abstract In contrast to conventional 2-D MOSFETs, FinFETs are able to be scaled down to 20 nm and beyond, and have superior performance. There are two types of FinFETs:SOI FinFETs and bul...
متن کاملChallenges in Manufacturing FinFET at 20nm node and beyond
Recently, there is strong interest in FinFET technology on bulk for lower cost and good compatibility with planar CMOS. Intel’s 22nm CMOS node is the 1 st commercially available bulk-FinFET technology and opens a new era of 3D CMOS for the low-power mobile electronics and continuously driving CMOS scaling and Moore’s law. The challenges in manufacturing FinFETs are reviewed. The Si surface of f...
متن کاملAnalysis and Design of Finfet Based Variable Gain Amplifier
Comparison of analog figures-of-merit of FinFETs and MOSFETs reveals an interesting tradeoff in the analog/RF design space. It is found that FinFETs possess the following key advantages over MOSFETs: reduced power dissipation, and better voltage gain without degradation of noise or linearity. This makes them attractive for low-frequency RF applications around 5 GHz, where the performance-power ...
متن کاملDESIGN OF 20 nm FinFET STRUCTURE WITH ROUND FIN CORNERS USING SIDE SURFACE SLOPE VARIATION
FinFET transistors have emerged as novel devices having superior controls over short channel effects (SCE) than the conventional MOS transistor devices. However, FinFET exhibit certain undesirable characteristics such as corner effects, quantum effects, tunneling etc. Usually, the corner effect deteriorates the performance by increasing the leakage current. In this work, the corner effect of Tr...
متن کامل